

Update on LArSoft Implementation of Space Charge Effect

Michael Mooney

MicroBooNE BNL Meeting February 11th, 2015

Introduction

- ◆ Quick update today on new implementation of space charge effect into LArSoft – simulation only for now
 - Current implementation for MicroBooNE only
 - Detector-independent implementation coming soon (week?)
 - Temporary hack while database solution is still in progress
 - See MicroBooNE Doc DB #4071 for previous implementation (since updated) more details also in backup slides

Outline:

- **New** changes to LArSoft (LArEvt, LArSim and uBoone code)
- How to use new SpaceCharge service for simulating SCE

LArSoft Mods

- Make following changes to LArSoft repositories:
 - LArEvt
 - SpaceCharge directory added
 - SpaceCharge/SpaceCharge_service.cc (and SpaceCharge.h)
 - New service to store/access maps for ionization electron displacement due strictly to space charge effect
 - Loads maps from file in constructor, if effect is enabled (see below)
 - Provides accessor methods (**GetPosOffsets**, which returns a vector<double>) to grab displacements given arbitrary {x,y,z} point in TPC e.g. using **TGraphs** for parametric representation (only option for now)
 - SpaceCharge/spacecharge.fcl
 - FHICL file containing default parameter values for SpaceCharge service
 - UPDATE:
 Move flag to
 ArG4Parameters
 in LArSim
- Two boolean parameters, **EnableSimulationSCE** and **EnableCorrectionsSCE**, set to **false** by default in **standard_spacecharge** sequence latter included for **future use only**
- Two string parameters, RepresentationType (e.g. "Parametric") and InputFilename ("SCEoffsets.root" by default)
- SpaceCharge/CMakeLists.txt

LArSoft Mods (cont.)

- Make following changes to LArSoft repositories:
 - LArSim

 $if (tpcg.Nplanes() == 2){$

- LArG4/LArVoxelReadout.cxx (and LArVoxelReadout.h)
 - Load/utilize SpaceCharge service via private member fSCEHandle
 - Modify **DriftIonizationElectrons()** to include SCE offsets to individual ionization electron cluster drift, if effect is enabled – checked via member function of SpaceCharge service, **EnableSimulationSCE()**

```
// Get SCE {x,y,z} offsets for particular location in TPC
std::vector<double> posOffsets;
if (fEnableSCE == true)
    posOffsets = fSCEHandle->GetPosOffsets(stepMidPoint.x()/cm,stepMidPoint.y()/cm,stepMidPoint.z()/cm);
else
    posOffsets.resize(3,0.0);
if (tpcg.DriftDirection() == geo::kNegX)
    posOffsets.at(0) *= -1.0;

// Drift time (nano-sec)
    double TDrift;
    XDrift += posOffsets.at(0);
    TDrift = XDrift * RecipDriftVel[0];
```

```
// Smear drift times by x position and drift time
G4RandGauss::shootArray( nClus, &XDiff[0], 0., LDiffSig);

// Smear the Y,Z position by the transverse diffusion
G4RandGauss::shootArray( nClus, &YDiff[0], (stepMidPoint.y()/cm)+posOffsets.at(1),TDiffSig);
G4RandGauss::shootArray( nClus, &ZDiff[0], (stepMidPoint.z()/cm)+posOffsets.at(2),TDiffSig);
```


LArSoft Mods (cont.)

- ♦ Make following changes to LArSoft repositories:
 - LArSim (cont.)
 - LArG4/CMakeLists.txt
 - uBoone code
 - uboone/SpaceCharge directory added
 - uboone/SpaceCharge/spacecharge_microboone.fcl
 - Add microboone_spacecharge sequence, which is a copy of standard_spacecharge sequence
 - uboone/Utilities/services_microboone_basic.fcl
 - Add microboone_spacecharge sequence to basic services list
- ◆ Also add SCEoffsets.root file containing TGraphs to \$LARSOFT_DATA_DIR
 - Move to \$UBOONE_DATA_DIR later and replace with dummy?
- ♦ Hack uses **MicroBooNE-specific coordinate transform** in SpaceCharge service's GetPosOffsetsParametric will update

Using SCE Service

- ♦ Extremely simple addition in driver FHICL file:
 - services.user.LArG4Parameters.EnableSCE: true
- ◆ Can make edits to SpaceCharge service parameters if desired (defaults listed below no reason to change for now):
 - services.user.SpaceCharge.RepresentationType: "Parametric"
 - services.user.SpaceCharge.InputFilename: "SCEoffsets.root"

Summary

- ◆ Successfully implemented space charge effect into LArSoft
 - Requires modifications to LArEvt, LArSim, uBoone code, and storage of one file in \$LARSOFT_DATA_DIR ("SCEoffsets.root")
 - Minor modification may be needed for including other experiments, but this is supposed to be a <u>temporary</u> hack, maybe not necessary
 - Additional G4 runtime with current implementation: +25%
 - To be replaced with faster database solution (Randy)

- ◆ Code located in **feature/mrmooney_SpaceChargeTest**
 - Already merged into develop in all repositories (same branch name)
 - SCE on: services.user.LArG4Parameters.EnableSCE: true

BACKUP SLIDES

Simulation of SC Effect

- Using dedicated code to produce ionization electron displacement maps
 - Forward transportation: $\{x, y, z\}_{true} \rightarrow \{x, y, z\}_{reco}$
 - Use to **simulate** effect in MC
 - Uncertainties describe accuracy of simulation
 - Backward transportation: $\{x, y, z\}_{reco} \rightarrow \{x, y, z\}_{true}$
 - Derive from calibration and use in data or MC to correct reconstruction bias
 - Uncertainties describe remainder systematic after bias-correction
- ◆ Two principal reprexentations to encode displacement maps:
 - **Matrix** more generic/flexible
 - **Parametric** (5th/7th order polynomials) fewer parameters
 - Uses matrix representation as input
 - Use in current LArSoft implementation

SCE Offsets (Matrix)

∆y FORWARD

SCE Offsets (Parametric)

LArSoft Implementation _{0.001}

Residuals of Forward Transportation (Uncert. in Simulation of Effect)

Magnitude of Forward Transportation (Reconstruction Bias)

Residuals of
Backward Transportation
(Post-bias-correction Uncert.
for <u>Perfect</u> Calibration)

0 0.5 1 1.5

2 2.5

 $\mathbf{X}'(m)$

1 1.5

Y (m)

10

Z (m)

Validation: SingleGen

- ◆ Produce private MC 10 GeV muons going through TPC center
- ◆ Compare nominal drift to **10X** SCE seems to be working fine!

Validation: µBooNE MCC5 BROOKHAVEN

- ◆ Look at 0.1-2.0 GeV isotropic muon events from MCC₅
- Again compare nominal drift to **10X** SCE no problems!

